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Objectives 
The goal of this project is to determine the multi-photon absorption spectrum 

of organic compounds, in order to establish its correlation with the molecular 

structure, to develop strategies to improve the nonlinear optical response of 

materials, with implications in photonic devices. Such task will be carried out 

using transmission measurements, such as the Z-scan, as well as fluorescence 

methods. The results interpretation we will be performed by using the sum-over-

essential-states approach, combined with quantum-chemical calculations within 

the DFT framework. 

 
Status of effort  
This report presents the progress we have made on the project Determination 

of multi-photon absorption spectra: a comparison between transmittance change 

and fluorescence methods, and refers to the period from November/2013 to 

February/2015. Initially we present new results on the two-photon absorption 

cross-section of a specific platinum acetylide complex. Then a summary of the 

2PA studies in the whole family of platinum acetylide complexes, investigate 

during this period of three years is presented, as well as a comparison between 

Z-scan and fluorescent methods to obtain the 2PA spectra. Finally, the three-

photon absorption spectrum of the platinum acetylide complexs is presented and 

discussed.  

 

Accomplishments 
The platinum acetylide complexes (PE’s) are materials with remarkable 

optical properties as such as high singlet and triplet absorption (from 104 to 105 

M-1cm-1) [1-4], efficient generation of singlet oxygen [5], intense two (thousands 

of GM units) [3, 6] and three-photon absorption (~10-78 cm6.s2.photon-2) [7], 

ultrafast intersystem crossing (from fs to ps) and long phosphorescence time (μs). 

[8] These characteristics are directly associated with the acetylide group that 

allows high electron mobility and the metallic center (platinum) with weak bound 

electrons, which provides a metal-to-ligand or ligand-to-metal charge transfer, 
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ideal to nonlinear optical applications. [9, 10] Among the possible applications of 

these materials, we can cite ones related with chemosensing [11], 

photodynamics therapy [8, 12], optical switching [13] to name a few.   

One of the first PEs to have their nonlinear optical properties investigated was 

the trans-Pt(PBu3)2 (C≡C-C6H4-C≡C-C6H5)2, named PE2, by Staromlynska et. al. 

[14]. According to their results, there is a direct transition from the ground state 

(S0) to the T0 state at 520 nm, indicating that the triplet state absorption 

dominates the nonlinear optical effect for pulse lengths from picoseconds to 

hundreds of nanoseconds. 

To avoid the mixing between the single and triplet states absorptions and 

to obtain the “pure” 2PA spectrum for the PE2, we have used 160-fs laser pulses 

operating at low repetition rate (1 kHz). The short pulse duration allows one to 

obtain pure 2PA because only negligible absorption from the population 

generated in the excited states happens, while the low repetition rate (1 KHz) 

helps to avoid cumulative effects between consecutive pulses, coming from 

possible triplet-triplet absorption. In this context, herein we report the two-photon 

spectrum of PE2 platinum acetylide complex from the visible to the near-infrared. 

The 2PA absorption spectrum was measured using the Z-scan technique with 

femtosecond pulses. As shown in Fig. 1, the PE2 present high conjugation length, 

composed by alternate single and double (or triple) bonds, which, in principle, 

should increase the nonlinear optical properties. 

P

P

Pt

C4H9H9C4

C4H9

H9C4 C4H9
C4H9

 
Figure 1 - Molecular structure of platinum acetylide complexes trans-Pt(PBu3)2 (C≡C-C6H4-C≡C-

C6H5)2. 

 

Figure 2 presents the experimental molar absorptivity (squares), 

experimental 2PA spectra (diamonds) and theoretical 2PA spectra (solid line), in 

which the last one was obtained by Nguyen et. al. [9] for the PE2 platinum 
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acetylide complex. The PE2 absorption spectrum presents the lowest energy 

band centered at 357 nm with maximum molar absorptivity of 8.95 x 104 M-1cm-1 

in dichloromethane. This band is related to the S0→S1 (ππ*) transitions with 

strong metal-to-ligand charge transfer character.  
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Figure 2 – Ground-state molar absorptivity (squares – left axes), experimental 2PA spectra 

(diamonds – right axes) and theoretical 2PA spectra (solid line) of PE2, in which the 
latter was reported in Ref. [9]. The standard deviation in the experimental 2PA cross-
section was determined to be 20 %. 

 

The linear spectrum (molar absorptivity) reveals that the absorption is 

entirely located in the near-UV region, shorter than 400 nm, which indicates to be 

completely transparent in the visible range, ideal to applications in photonic. In 

addition, as previously described by Staromlynska et. al. [14], PE2 presents a 

very small absorption peak at 520 nm with molar absorptivity extremely low (1.3 

M-1cm-1) assigned the direct S0→T1 transition.  

In Fig. 2, the diamonds illustrate the 2PA spectrum obtained for the PE2 in 

dichloromethane solution using 160-fs laser pulses and low repetition rate (1 

kHz). As it can be noted, the experimental 2PA spectrum for the PE2 exhibits two 

bands located at 570 and 710 nm with cross-section of approximately 320 and 45 

GM, respectively, as well as the resonant enhancement effect observed for 

wavelengths shorter than 500 nm. In Fig. 3, we show a few of our Z-scan curves 

corresponding to the three spectral regions previously described as well as the 

irradiance employed during the experiments. The decrease observed in the 
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normalized transmittance as a function of the z position indicates a 2PA process, 

since excitation took place in nonresonant conditions.  
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Figure 3 – Open-aperture Z-scan curves for the three different regions described along the 

nonlinear spectrum as well as the irradiance employed during the experiments. The 
solid lines represent the fitting employing the Eq. (1). 

 

It is worth mentioning that at 595 nm, we found 2PA cross-section value 

around 290 GM for the PE2, which is approximately 1.23 times higher than one 

obtained by Staromlynska et. al. [14] by means of picosecond laser pulses. This 

value is within of our experimental error estimated at 20 %. Moreover, the 

authors from Ref. [14] used a 10 mm cuvette for the nonlinear absorption 

measurements, which is much higher than the Rayleigh length of the laser beam 

(z0 ~ 2.0 mm) [20].  Moreover the authors used a concentration ten times higher 

than ones used in our Z-scan measurements, which may interfere considerably 

in suitable determination of the 2PA cross-section. Other point that can be 

considered to explain the difference in the 2PA cross-section is the population on 

the excited singlet and triplet states [15-19]. In this case, for longer pulse widths 

(ps and ns), excited state absorption are not anymore negligible. Consequently, 

for longer pulses, the total absorption cross-section has contribution from a 2PA 

transition and 1PA excited state transitions that, at the present case, could 

decrease the effective absorption cross-section due to a lower excited state 

absorption cross-section at the excitation wavelength.  

It is important to mention here that at last few years, in nonlinear optical 

measurements, the resonant enhancement have been widely explored because 



 6

it is possible to obtain nonlinear optical effects extremely high only tuning the 

excitation wavelength close to the first one-photon allowed excited state [21-23]. 

Alternatively, it is also possible to tune the optical bandgap of material through 

the molecular engineer to obtain in determined spectral range as the 

telecommunications region (1300-1550 nm) extraordinary nonlinear optical 

effects [24]. Based on these points, we can observe that PE2 presents a 

monotonic increase on the 2PA cross-section in the enhancement effect region 

given an increase of about 14 times of magnitude (635 GM at 460nm) if 

compared with the lowest energy 2PA band peak at 710 nm.   

In order to verify if the maximum peak intensity used in Z-scan 

experiments could cause photodegradation or interfere in determination of the 

2PA cross-section, we display the normalized transmittance as a function of the 

irradiance at 570 nm in Fig. 4, corresponding to the peak of the higher energy 

2PA band. As can be seen, in the irradiance range used, the PE2 molecule does 

not present any spurious effect that could contribute to an inappropriate 

determination of the 2PA cross-section. The value obtained through of this 

experiment correspond exactly to one found by means of Z-scan technique at 

570 nm. Alternatively, to verify if any photodecomposition was taking place 

during the Z-scan, we measured the linear absorption spectra after the 

experiment and we did not observe any degradation for the intensity range used. 

Recently, Nguyen et. al. [9] theoretical investigated the one- and two-

photon absorption spectra of platinum acetylide chromophores using time-

dependent density functional theory (TDDFT). In that paper, they studied the 

influence of different conformations on the ground state geometry of the 

chromophores on the linear and 2PA spectra.  
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Figure 4 – Normalized transmittance as a function of irradiance at 570 nm for PE2 in 

dichloromethane solution (optical length of cuvette used 2 mm). The solid lines 
represent the fit obtained using a model based only in 2PA.  

 

Because of the facile rotations of the trimethylphosphinyl and phenylene 

groups, PEs may exhibit several conformations. In this sense, Nguyen et. al. [9] 

apply a Boltzmann-weighted average over thermally accessible conformations to 

obtain the final 2PA spectrum (solid line in Fig. 2). As it can be seen, the 

theoretical spectrum reproduces well the higher energy 2PA-allowed band for 

both spectral position and 2PA cross-section magnitude. This band has been 

assigned preferentially to the 11Ag-like→41Ag-like transition that is related to the 

strong intramolecular interaction between the branches due to the presence of 

platinum atom. Contrariwise, the experimental 2PA spectrum presents a band 

around at 710 nm with 45 GM (hν = 355 nm), which does not appear in the 

theoretical spectrum. It is observed that this band has a spectral correspondence 

with the lowest-energy band of the linear absorption spectrum (~ 357.5 nm).  

Recently it has been shown that PEs in solution exhibit a mixing of 

centrosymmetric and noncentrosymmetric conformations [1]. It is well known that 

for centrosymmetric molecules, one-photon allowed transitions are two-photon 

forbidden[25]. However, as PEs exhibit this mixing of conformations, it is 

expected that the selection rules are relaxed since it is not possible to define 

precisely the  excited state parity [9, 10, 26]. Consequently, transitions are 
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allowed by one and two-photon absorption. As a result, the nature of the lowest-

energy 2PA band for the PEs is associated with the breaking of symmetry of 

these chromospheres in solution. Such behavior generates a permanent dipole 

moment change ( μΔ
r ) that can be visualized as if the charge density is localized 

on only one ligand [1]. 

In the context of the sum-over essential states approach, the value of the 

permanent dipole moment change is proportional to the 2PA cross-section at the 

peak in the same transition and can be written as [27, 28]: 

 

( ) ( ) ( )
( ) ( )

1/2
2 max01

01 01013 3 2
max 01

5
3 10 ln 102 2

PAAN hc n
L

ω
μ σ ω

ε ωπ

−⎛ ⎞
⎜ ⎟Δ =
⎜ ⎟×⎝ ⎠

r
 

(1),

 

in which h is Planck’s constant, c is the speed of light, 01μr  is the transition dipole 

moment, 01μΔ
r

 is the difference between the permanent dipole moment vectors of 

the excited ( 11μr ) and ground ( 00μr ) states. ( )2 23 / 2 1L n n= +  is the Onsager local 

field factor introduced to take into account the medium effect with n=1.424 for 

dichloromethane at 20oC. ( )max 01ε ω  is the molar absorptivity in the frequency ( 01ω ) 

of the peak of the lowest energy 1PA band, and AN  is the Avogadro’s number.  

Substituting the 2PA cross-section value obtained through the 

femtosecond Z-scan technique (~45 GM at 710 nm), we found 01 3.0DebyeμΔ =
r . 

Such a value is  feasible if the Franck-Condon excitation is localized on only one 

ligand as has been reported for the PEs family [3, 6, 29, 30]. From the quantum 

chemical calculations point of view, still remains a challenge to describe correctly 

the molecular symmetry breaking of PEs in solution and, consequently, the 

lowest-energy 2PA allowed band observed experimentally.   

In order to corroborate that the 2PA spectrum do not have significant 

contributions coming from the triplet state absorption, we estimate the fraction of 

the population excited by 2PA that is transferred to the triplet state through 

intersystem-crossing (~300 ps intersystem-crossing time) and direct transition 
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(S0→T1) using the rate equation model [30]. Considering the 160-fs duration of 

our pulse and including the  S0→T1 transition in the methodology reported in Ref. 

[30], the population transferred to the triplet state at 595 nm, after the 160-fs and 

27-ps pulse interaction, is showed in Fig. 5. It is important to mention that the 

2PA cross-section and irradiance values used in Fig. 5 corresponds those 

employed here to fs pulses (290 GM, 260 GW/cm2) and reported in Ref. [14] to 

ps pulses (235 GM, 10 GW/cm2). As it can be noted, the population transferred to 

the triplet state after fs-pulses irradiation calculated is less than 1% of the 

population excited to singlet states while to ps-pulses the percentage is of 

approximately 30 %. Therefore, the influence of the triplet state population in the 

total nonlinear absorption excited via fs pulses is negligible within our 

experimental error.  
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Figure 5 – Calculation of the population dynamics induced by 2PA described by the rate 
equations at 595 nm (see Ref. [30]). The left side shows the population dynamics after 
fs-pulses irradiation while the right side shows the ps-pulses irradiation. The solid lines 
show the normalized laser pulse, while the squares describe the distribution of 
populations excited by 2PA.  

 

2- Brief summary of 2PA studies in Platinum Acetylide Complexes 
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The results shown up to this point are the latest ones obtained in this period. 

Since this is the final report regarding this project, I would like to present a very 

brief summary of the results obtained in the whole period of 3-years, related to 

the study of two-photon absorption in the Platinum Acetylide Complex (PAC) 

studies, displayed in Fig. 6. 
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Figure 6 - Molecular structures of platinum acetylide complexes studied in the project. 

 

In Fig. 7 we show the 2PA spectra (red squares) for all PACs (presented in 

Fig. 6), plotted along the linear absorption for each sample. As it can be seen, 

from the 2PA spectra, there are three main features that appear for all 

compounds; (1) the resonant enhancement region, (2) a 2PA band around 300 

nm  and (3) a 2PA band (less intense) around 350 – 400 nm.This 2PA band is 

typical of both centrosymmetric and noncentrosymmetric platinum acetylide 

complexes, and can achieve cross-section values from few hundreds up to five 

thousands GMs, and are ascribed to the transistios displayed in the shaded area 

of Fig. 7. 

As it can be seen from Fig. 7, our results indicate a 2PA for the same 

transition where there is a 1PA. As we know, a state that is 1PA allowed should 
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be forbidden by 2PA. Therefore, such transition is made possible due to 

relaxation of the selection rules.  

The first 2PA band was attributed to the S0→S1 (11Ag-like→11Bu-like) 

transition, which is made possible because of a relaxation of the selection rules 

for PAC’s that, in solution, present centrosymmetric and noncentrosymmetric 

conformers. 
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Figure 7 - Experimental 2PA spectra (red squares – right axes) and 1PA spectra (solid line - 

black) for PACs displayed in Fig. 6. 

 

Therefore, these molecules should present a difference between dipole 

moment (static or permanent) of the ground state and excited state, since the 

dipolar contribution term is the one responsible for 2PA in molecules that are 

noncentrosymmetric. From the 2PA spectra (Fig. 7) we are able to determine the 

dipole moment change (Δμ). Such results as presented in Fig. 8. 
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Figure 8 - Dipole moment change (Δμ) obtained from the 2PA spectra for all PACs studied 

 

The results of Fig. 8 reveal that molecule IV present the higher value for Δμ, 

which should indicate that for this molecule a higher charge delocalization is 

occurring in the excited state.  Such break of symmetry, that actually relax the 

transition selection rules, can be explained due to a large twisting angle of the 

ligand’s phenyl rings relative to the Pt core, which generate a permanent dipole 

moment difference between the excited and ground state non-null. 

Finally, in Fig. 9 we present illustrative results on the comparison between 

2PA spectra obtained using the Z-scan approaches (transmissive), performed in 

our laboratory, with the ones obtained by fluorescence techniques (from 

literature). As it can be seen, this comparison clearly shows that there is 

significant differences from results obtained using both methods.  
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Figure 9 – Comparison between 2PA spectra we measured by using Z-scan technique (square – 
red) with the ones obtained via fluorescent methods (black circles). Such spectra correspond to 
the molecules illustrate in the left hand side of the figure.  
 
 

3- Three-photon absorption in Platinum Acetylide Complexes 
We have also studied the three-photon absorption (3PA) spectrum of the 

PAC´s complexes displayed in Fig. 6, using the Z-scan methods. In Fig. 10 we 

present typical 3PA Z-scan curves, obtained at 900 nm for the investigated 

compounds. 
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Figure 10 – Z-scan curves of PAC compounds obtained at 900 nm, corresponding to a 3PA 
process. 
 
 

To confirm the actual three-photon absorption nature of the observed results, 

we measured the dependence of the Z-scan normalized transmittance change 

(ΔT) as a function of the excitation irradiance (Fig. 11). The slope derived from a 

linear fit (log-log scale) of ΔT as a function of excitation intensity indicates the 

mechanism of absorption. Therefore, a slope of 1.0 indicates a 2PA, while a 

slope of 2.0 reveals a 3PA. Slopes whose values are intermediate indicate a 

mixture of processes. As shown in Fig. 11 (right) for 900 nm, a slope of 

approximately 2.0 was observed for all compounds, signifying a 3PA 

mechanisms. Another evidence of the three-photon nature of the observed 

nonlinear absorption is given in Fig. 11 (left). The dotted line represents the best 

fitting obtained considering a 2PA process. As it can be seen, the fitting does not 

describe properly the experimental results. On the other hand, the fitting obtained 

when the 3PA is considered (solid line) agrees very well with the experimental 

data. 
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Figure 11 – Experimental open aperture Z-scan signature for compound III at 900 nm. The 
dotted and solid line represents the best fitting obtained considering a 2PA and 3PA process (left). 
Normalized transmittance change (∆T) as a function of the excitation irradiance at 900 nm for the 
four acetylide platinum complexes. The inset shows the slope for each molecule. 
 
 

Figure 12 displays the 3PA cross-section spectra of platinum acetylides from 

approximately 850 nm to 1200 nm (circles). As it can be seen, the 3PA cross-

section increases as the excitation wavelength approaches the visible region, 

reaching values of approximately 3×10-78 cm6 s2 photon-2 for compounds II, III 

and IV; and 1.6×10-78 cm6 s2 photon-2 for compound I. Such behavior, observed 

for all compounds, is associated to the resonant enhancement of the nonlinearity 

that takes place when two photons of the excitation wavelength approach the 

lower two-photon allowed states of the molecules, which are located in visible. 

The 2PA spectra of this family of compounds cover the entire visible region, with 

peaks from 600 nm to 750 nm, depending on the compound. It is worth 

mentioning that the 2PA spectrum of the compounds studied here are negligible 

in the near infrared (around 850 nm). Additionally, the 3PA spectra for 

compounds II, III and IV present a band around 1180 nm that correspond to an 

one-photon allowed state located between 380 - 400 nm. Such transitions are 

allowed because the electric-dipole selection rules are the same to both types of 

process (1PA and 3PA). 
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Figure 12 – Normalized absorbance (solid line – left axes) and three-photon absorption (solid 
circles – right axes) spectra of platinum acetylide complexes. 
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